OTS leftovers: Does leaf pH influence herbivory?

My research focuses on how species have adapted to environmental variation and how these adaptations influence species’ niche breadths and geographic distributions. Although IUntitled focus on tropical plants, and insect herbivores are a substantial biotic selection pressure, herbivory is not a topic I actively pursued until I participated in an OTS course last summer. On my OTS course I was able to investigate an array of topics from plant defense to plant-mediated tri-trophic interactions, all of which are documented in our 2015 OTS coursebookOf all the projects I participated in, the last project of the course remains my favorite because it has provoked new questions, some of which have informed my thesis research.

In this last project, my classmate and I were following-up a previous study in which we investigated the ability of leaf pH to predict herbivory in plants. Literature suggested that low pH values deter herbivores in the sub-arctic where ungulates, not insects, are the dominant herbivores. Consequently, the influence of leaf pH on herbivory in tropical to sub-tropical regions where insects are the dominant herbivores is unclear. In our first project, my classmate and I found no effect of leaf pH on standing herbivore damage in the 5 Piper species we measured. For our follow-up project we were interested in determining the sources of variation that may have influenced leaf pH, and thus, the results of our previous study. Ultimately, we decided to investigate diurnal and ontogenic changes in leaf pH for two Piper species. 

t-tests2

Figure 1: Ontogenic changes in leaf pH of P. multiplinervum & P. hispidum

Interestingly, our immature leaves exhibited the lowest pH values (Fig 1), and immature leaves have previously been shown to be the most palatable to insect herbivores. Compared to mature leaves, immature leaves tend to receive more insect herbivory because they are softer, are higher in nutrients, but also produce more chemical defense compounds. Therefore, leaf acidity may be correlated with leaf age and linked to chemical defenses that deter herbivores. If so, leaf pH could be an easily-measured trait used to understand the susceptibility of plants to insect herbivory.

In addition to ontogeny, leaves also exhibited diurnal changes in their chemistry (Fig 2). We found that both immature and mature leaves that were measured in the morning (~9am) had lower pHs than leaves measured in the the afternoon (~4pm). These diurnal fluctuations may have resulted from changes in carbonic acid and cytoplasmic proton gradients throughout the day. However, given the potential relationship of pH to chemical defenses, it is easy to speculate that some chemical defenses could fluctuate throughout the day in addition to ontogenic phase. 

lascruces-ttests

Figure 2: Diurnal changes in leaf pH of P. multiplinervum & P. hispidum

Since our first study did not properly measure herbivore damage, the effect of pH on insect herbivory remains an unanswered question. The observations from our follow-up study indicate pH is probably correlated with ontogeny, which has been shown to influence the production of chemical defenses that deter herbivory. pH was also observed to fluctuate diurnally, and may indicate diurnal changes in herbivore deterrence.

What I think is exciting about these results is that if pH does influence herbivory, insects may feed upon leaves according to temporal differences in leaf chemistry. In turn, these short-term temporal feeding preferences could promote co-existence of insect species, which greatly outnumber plant species, and are likely to overlap in diet-breadth. There are many unanswered questions that this project has induced that warrant further investigation before any concrete conclusions can be made about the influence of pH on insect herbivory. 

My uncharacteristic foray into plant-insect interactions has led me to a new understanding of niche-breadth and coexistence theories through concepts such as the storage effect that incorporate temporal niche partitioning – a topic of great relevance to my thesis. Moreover, my newfound interest in herbivory highlights the benefit of stepping outside the territory of your own research in order to gain a better understanding of it. 

Now that I am in Florida, where Pipers are introduced and rare,  I’ve been
gathering information on the native species Psychotria nervosa to address some of the questions I developed while on my OTS course. I’m currently collecting and identifying insects that feed on P. nervosa, and have already quantified ontogenic changes in leaf nutrients. As my course-load dwindles and the resources at the International Center for Tropical Botany 
become available, I hope to dedicate more time to understanding how leaf chemistry influences insect herbivory in the sub-tropics as a side-project…so stay tuned.

IMG_2996

Me (Tim Perez) happily collecting Piper cenocladum at La Selva Biological Station, Costa Rica.

Mating Knight anoles (Anolis equestris) at FTBG

This morning Ken and I witnessed mating Knight anoles (Anolis equestris), a non-native lizard species introduced to south Florida from Cuba, in the rainforest section of Fairchild Tropical Botanical Gardens. They were positioned ~2.5m from the ground.

test_caption

test_caption

Have you seen them yet? They are in this box somewhere…

test_caption

test_caption

Here is a close up – still difficult to spot!

test_caption

test_caption

Aside from being a pretty rare observation, this is interesting for a couple of reasons; i) relatively little is known about this species’ ecology in south Florida, so records of breeding activity and location are important, ii) this species is naturally highly arboreal – they are morphologically adapted to life at the top of the trees possessing larger toepads and shorter limbs relative to more terrestrial Anolis sp. Therefore observing an breeding pair in action, potentially representing an individual’s most vulnerable activity to either competitors or predators, outside of their preferred habitat range is interesting! Why is this occurring there?

Of course, this could just be a fluke. The majority of breeding attempts may occur in their preferred habitat location in tree crowns outside of our detection. Either way, a nice piece of lizard behaviour for a Friday morning!

Anolis lizard predation in south Florida

A common concept in ecology is that predators have a strong influence on the behaviour of prey species. Anolis lizards have been used as a classic model system to investigate the effect of predator presence on the behavioural response of prey species. On small experimental islands in the Bahamas the manipulated introduction of curly-tailed lizards (Leiocephalus carinatus), a large terrestrial anole-predator, has resulted in brown anoles (Anolis sagrei) shifting higher up in the vegetation, presumably in an understandable effort to avoid being eaten (123). However, predator-prey interactions such as these which may shape community structure are often difficult to observe.

Here in Miami FL we have a rich and diverse, although largely non-native, lizard community. There are two species of “crown-giant” anoles, the Cuban knight anole (A. equestris) and the Jamaican giant anole (A. garmani), that could be potential predators of smaller anoles in the canopy of trees and upper half of tree trunks (although see Giery et al. 2013 for an empirical analysis that suggests this may not be the case). Additionally, there are several large, terrestrial lizards present which may be filling a similar role to curly-tails in the Bahamas.

Potential lizard predators in south Florida:

– *Red-headed agama (Agama agama)
– *Cuban knight anole (Anolis equestris)
– Jamaican giant anole (Anolis garmani)
– *Brown basilisk (Basiliscus vittatus)
– Spiny tailed iguana (Ctenosaura similis)
– Curly-tail lizard (Leiocephalus carinatus)
– Giant day gecko (Phelsuma grandis)
– Black and white tegu (Tupinambis merianae)

Earlier this afternoon, while taking a break from my office at Fairchild Tropical Botanical Gardens (a hot spot for any anologist visiting Miami; 1234) in a typical graduate student effort to put off work that I should be doing instead, fellow lab member Evan Rehm and I noticed some scuffling in a nearby bush. At around 2.5m, and admittedly on relatively precarious branches by this stage, sat an adult female African red-headed agama (A. agama) around 30cm from an adamantly motionless adult male Cuban brown anole (A. sagrei)! As we moved towards the bush the agama was quick to ungraciously thump itself to the floor, while the brown anole remained still. On closer inspection, it soon became apparent why both lizards were so high.

text2

Adult male Cuban brown anole (A. sagrei) found ~2.5m high in Miami FL, supposedly following a predation attempt from an African red-headed agama (A. agama) – JStroud

The significance of tail loss/damage in a population is still debated. The classical view argues that high proportions of tail damage indicates high predation pressure, therefore prey populations are under high predation stress (1). Alternatively, high proportions of tail damage could indicate low predator efficiency, which would suggest prey populations are experiencing low predation stress (12). But the debate doesn’t stop there! Having already lost a tail, a lizard may experience either a resulting increase or decrease in predation depending on the predator species and its associated foraging tactic (1).

text2The extent of tail damage is clearer in this photo. The lizard had autotomised the lower half of it’s tail however a secondary half-completed break is also evident – JStroud

African red-headed agamas (A. agama) are similar morphologically to curly-tailed lizards (L. carinatus), although are taxonomically distinct (Agamidae and Leiocephalidae, respectively). Predation of anoles by agamas in Miami has not previously been officially recorded, and the impact of these large predators remains unclear. Unlike in the Bahamas, there are multiple predators in the same geographic vicinity that anoles need to be aware of. For example, at Fairchild, brown anoles (A. sagreicould be eaten from below by agamas, eaten at intermediate levels by basilisks and eaten from above by knight anoles!

South Florida is a tough place to be an anole!

agama

Adult male African red-headed agama (A. agama) at Fairchild Tropical Botanical Gardens, Miami FL. The population of agamas is localised to the botanical gardens; the source remains unclear but is likely an introduction from the pet trade – JStroud

 

An Undergraduate’s Perspective

I would like to begin this blog post with a quick introduction about myself:  My name is Christine Pardo and I am a senior attending Florida International University in Miami, Florida. As an undergraduate pursuing a career in the fields of ecology and conservation, I have made it a goal of mine to have a myriad of experiences under my belt before I cross that threshold event into the “real world” otherwise known as graduation. In the summer of 2012 I spent three months as a volunteer with Dr. Kenneth Feeley and his graduate student Evan Rehm working in the Andean cloudforests of Manu National Park in southern Peru. This past summer, I participated in Harvard Forest’s Summer Research Program in Ecology supported through the National Science Foundation’s Research Experience for Undergraduates fellowship.

As a contributor to upwithclimate, I am going to blog a series of insights I have gained from those past experiences and more. I hope to accomplish two main goals from my series of blog posts. First, I want to actually bring to light the undergraduate perspective on a variety of topics related to pursuing a career in ecological research. Second and most importantly, I hope that my posts will serve as advice to anyone like myself who has decided during their undergraduate years to take the plunge into this truly amazing field.

My next few posts will highlight my most recent experience at Harvard Forest. I look forward with anticipation to begin this blogging project!

-Christine (cpard008@fiu.edu)

Collecting soil samples from Prospect Hill at Harvard Forest.

Collecting soil samples from Prospect Hill at Harvard Forest.